3、纳米材料

纳米技术正在推动材料科学,它突破了曾经看起来不可能的限制。TRY2004金字塔超级城市概念曾为东京发展做出了很大的帮助,但由于该项目的难度,它只能在碳纳米管的帮助下完成。
当与高强度混凝土结合使用时,碳纳米管(CNT)等纳米材料会产生一种伸缩性强的材质,使得建筑不再需要钢筋,因此加快了施工进程。还有更多的可能性,其他发展包括超轻型(超强)材料以及另一种自修复混凝土。
4、可编程水泥

混凝土生产是温室气体排放的罪魁祸首之一。为了进一步改进混泥土材料,美国莱斯大学的研究人员将目光投向了纳米级领域,他们研究了硅酸钙水合物(C-S-H)水泥如何结晶,并用它来合成具有特定形状的C-S-H颗粒。研究人员将它们变成立方体,矩形、棱柱、树突状、核壳和菱形,这样的形状能够让它们更密集地放在一起。团队能够通过调整原始种子的浓度、温度和生成过程的持续时间来控制这些最终颗粒的数量、大小和形状。然后将该信息映射成可以与制造商和建造者共享的统一形态图,使他们设计具有特定期望属性的混凝土。
“一个优点是,因为它变得更强硬,所以不需要太多就能达到以前的效果,”研究人员解释说:“这是由于立方体颗粒的压紧效果更好会产生更强的微观结构;另一个优点是其更耐用,以及更少的孔隙率使得其隔绝了更多化学物质的进入,因此钢筋内部不易受到破坏。”
5、自修复混凝土

混凝土是世界上使用最广泛的建筑材料。事实上,它是水之后地球上第二大消费品。混凝土有廉价和广泛适应性等优点,但也容易开裂,在极热和极冷环境下抗压性能会恶化。
过去修复有裂缝的混凝土的唯一途径就是修补它、加强它,或者把它敲下来从头开始。但以后将不需再这样了。美国罗德岛大学的研究生和化学工程教授创建了一种新型“智能”混凝土,可以“智能”修复自身的裂缝。这是因为混凝土混合物中嵌入了微型水玻璃胶囊。当裂纹产生时,胶囊破裂并释放一种凝胶状愈合剂,变硬填补空隙,实现自我修复。
当然,这不是自修复混凝土的唯一修复方法。其他研究人员利用细菌或嵌入玻璃毛细管或聚合物微胶囊达到类似的效果。
延长混凝土的寿命能带来巨大的环境效益。目前世界范围内的混凝土生产占全球二氧化碳排放的5%。智能混凝土不仅会使我们的结构更安全,也可以减少温室气体的排放。